Mortality Rates from Stray Energy Burn Bowel Injuries Using Non-AEM Monopolar Laparoscopic Instruments:

Description	USA Data
Number of monopolar laparoscopic procedures performed in the USA every year:	2,550,000
 3 million laparoscopic procedures annually in USA¹ 	procedures
 85% use monopolar electrosurgical energy¹ 	annually
Incidence of stray energy burn bowel injuries during laparoscopic surgery:	6.5 injuries per
 (1.3 bowel injuries in 1000 procedures)*(50% are due to thermal injury)²⁻⁵ 	10,000 procedures
Incidence of death from thermal bowel injuries during laparoscopic surgery:	1.6 deaths per
 Intestinal perforation manifests into fecal peritonitis, with a mortality rate of 25%⁶ 	10,000 procedures
 (6.5 injuries per 10,000 procedures)*(25%) = 1.63 deaths per 10,000 procedures 	
Number of preventable monopolar laparoscopic deaths over a 10 year period:	4,144 deaths over
 (2,550,000 procedures annually)*(0.01625% risk)*(10 years) = 4,144 	10 years
Number of preventable monopolar laparoscopic deaths per year:	400 - 500 deaths
 (2,550,000 procedures annually)*(0.01625% risk) = 414 	per year
Number of preventable monopolar laparoscopic deaths per day:	1 - 2 deaths per day
 (2,550,000 procedures annually)*(0.01625% risk) / (365 days) = 1.14 	

Complication Rates from All Stray Energy Burn Injuries Using Non-AEM Monopolar Laparoscopic Instruments:

Description	USA Data
Preventable stray energy burns occur 0.6 – 5 per 1,000 procedures ⁷	0.6 – 5 stray energy
	burn injuries per
	1,000 procedures
Number of preventable monopolar laparoscopic burns over a 10 year period:	71,400 injuries over
 2.8 stray energy burn injuries in 1000 procedures (average)⁷ 	10 years
 (2,550,000 procedures per year)*(2.8 injuries per 1,000 procedures)*(10 years) = 	
71,400 stray energy burn injuries in 10 years	
Number of minutes between preventable monopolar laparoscopic burns:	Every 90 minutes a
 (2,550,000 procedures)*(2.8 injuries/ 1,000 procedures)/(365 days)*(24 	patient is burned
hours/day)*(60 min/hour) = every 73 minutes a patient stray energy burn occurs	

REFERENCES

- 1. Pyrek K., Education in electrosurgery technology is key for patient safety. *Infection Control Today*. http://www.infectioncontroltoday.com/general-hais/education-electrosurgery-technology-key-patientsafety. Accessed March 20, 2018.
- Bishoff JT, Allaf ME, Kirkels W, Moore RG, Kavoussi LR, Schroder F., Laparoscopic bowel injury: incidence and clinical presentation. J Urol. 1999;161(3):887-890.
- Nduka CC, Super PA, Monson JR, Darzi AW., Cause and prevention of electrosurgical injuries in laparoscopy. J Am Coll Surg. 1994;179(2):161-170.
- 4. Southern Surgeons Club, New England Journal of Medicine 1991 Nov 21;325(21):1517.
- 5. Polychronidis A, Tsaroucha AK, Karayiannakis AJ, et al., Delayed perforation of the large bowel due to thermal injury during laparoscopic cholecystectomy. J Int Med Res. 2005;33(3):360-363.
- Brill AJ, Feste JR, Hamilton TL, et al., Patient safety during laparoscopic monopolar electrosurgery principles and guidelines. JSLS. 1998;2(3):221-225.
- Martin, Moore, Tucker, Fuchshuber, Robinson., Quantifying Inadvertent Thermal Bowel Injury from the Monopolar Instrument. The Journal of Surgical Endoscopy. November 2016, Volume 30, Issue 11, pp 4776–4784.

CHARMLESS BOR

ENCISION INC.

6797 Winchester Circle • Boulder, CO USA 80301 T: 800.998.0986 • F: 303.444.2693 www.encision.com • info@encision.com